Differential mechanisms underlying the modulation of delayed-rectifier K+ channel in mouse neocortical neurons by nitric oxide.

نویسندگان

  • Nian-Lin R Han
  • Jian-Shan Ye
  • Albert Cheung Hoi Yu
  • Fwu-Shan Sheu
چکیده

The modulatory effects of nitric oxide (NO) on voltage-dependent K+ channels are intricate. In our present study, the augmentation and reduction of K+ currents by NO donor S-nitro-N-acetylpenicillamine (SNAP) and pure dissolved NO was observed in dissociated neurons from mice neocortex with both whole cell and cell-attached patch clamp. By using a specific electrochemical sensor, the critical concentrations of NO that increased or reduced the channel activities were accurately quantified. Low concentrations of SNAP (20 microM) or NO solution (0.1 microM) enhanced whole cell delayed rectifier K+ -current (IK) and left the fast inactivating A current (IA) unchanged. However, high concentrations of SNAP (100 microM) and NO (0.5 microM) reduced both IK and IA currents. In cell-attached experiments, a significant increase in channel open probability (NP0) was observed when using low concentrations of SNAP or NO. High concentrations of SNAP or NO dramatically decreased NP0. The increase in channel activities by low concentrations of SNAP was abolished in the presence of either inhibitors of soluble guaylate cyclase or inhibitors of cGMP-dependent protein kinase G, suggesting a link to the NO-cGMP signaling cascade. The reduction of channel activities by high concentrations of SNAP was reversed by the reducing agent dithiothreitol, implying a redox reaction mechanism. Thus both NO-cGMP signaling and a redox mechanism are involved in the modulation of IK channel activity for neuron excitability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel

Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...

متن کامل

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock

One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN), is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive i...

متن کامل

FIVE ALPHA DIHYDROTESTOSTERONE (5α-DHT) MAY MODULATE NITRIC OXIDE RELEASE VIA ENDOGENOU S CYTOKINES IN PERITONEAL MA CROPHA GES OF NZB/BALBc MICE

Recent studies have established that sex hormones directly or indirectly affect T and B cells and macrophages by manipulating the production of cytokines. In this study the possibility of the effect of 5a-DHT on macrophage (MΦ) nitric oxide (NO) release via interleukin-l, 6 (lL-1β, IL-6) or tumor necrosis factor-a (TNFα) was investigated. The endogenous cytokines IL-1β, IL-6 and TNF-α were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 4  شماره 

صفحات  -

تاریخ انتشار 2006